High-resolution lenses for sub-100 nm x-ray fluorescence microscopy
نویسندگان
چکیده
منابع مشابه
Towards Sub-100 Nm X-ray Microscopy for Tomographic Applications
We have demonstrated that structures down to 150 nm can be visualized in X-ray projection images using a nano-focus X-ray source. Due to their unlimited depth of focus, they don a limit on the specimen size in the case of 3D tomographic imaging. Further simulation studies have shown that optimization of the detector response curve and switching from a reflective Xray target to a transmission ta...
متن کاملA Hard X-ray KB-FZP Microscope for Tomography with Sub-100-nm Resolution
An instrument for high-resolution imaging and tomography has been built at the APS beamline 34 ID-C, Argonne National Laboratory. In-line phase contrast tomography can be performed with micrometer resolution. For imaging and tomography with resolution better than 100nm a hard X-ray microscope has been integrated to the instrument. It works with a Kirkpatrick-Baez (KB) mirror as condenser and a ...
متن کاملCompact soft x-ray transmission microscopy with sub-50 nm spatial resolution.
In this paper, the development of compact transmission soft x-ray microscopy (XM) with sub-50 nm spatial resolution for biomedical applications is described. The compact transmission soft x-ray microscope operates at lambda = 2.88 nm (430 eV) and is based on a tabletop regenerative x-ray source in combination with a tandem ellipsoidal condenser mirror for sample illumination, an objective micro...
متن کاملHigh-resolution compact X-ray microscopy.
We demonstrate compact full-field soft X-ray transmission microscopy with sub 60-nm resolution operating at lambda= 2.48 nm. The microscope is based on a 100-Hz regenerative liquid-nitrogen-jet laser-plasma source in combination with a condenser zone plate and a micro-zone plate objective for high-resolution imaging onto a 2048 x 2048 pixel CCD detector. The sample holder is mounted in a helium...
متن کاملHigh resolution 3D x-ray diffraction microscopy.
We have imaged a 2D buried Ni nanostructure at 8 nm resolution using coherent x-ray diffraction and the oversampling phasing method. By employing a 3D imaging reconstruction algorithm, for the first time we have experimentally determined the 3D structure of a noncrystalline nanostructured material at 50 nm resolution. The 2D and 3D imaging resolution is currently limited by the exposure time an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2000
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.1329638